
o g~nIl 'vLr COPY
o~
T- RADC-TR-89-259, Vol XI (of twelve)
N Interim Report

SOctober 1989

NORTHEAST ARTIFICIAL
INTELLIGENCE CONSORTIUM ANNUAL
REPORT - 1988 Inference Techniques
for Knowledge Base Maintenance Using
Logic Programming Methodologies

Syracuse University

Kenneth A. Bowen DTIC__
ELECTEFEB 13199011

EM
APPROVED FOR PUBLIC RELESE; DISTRIBUTION UNLIMITED.

This effort was funded partially by the Laboratory Director's fund.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441.5700
.1

This report has been reviewed by the RADC Public Affairs Division (PA)

and is releasable to the National Technical Information Services (NTIS) At

NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-89-259, Vol XI (of twelve) has been reviewed and is approved

for publication.

APPROVED:

JOHH J. CROWTER
Project Engineer

APPROVED:

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER: (j "

IGOR G. PLONISCH
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer employed by your

organization, please notify RADC (COES) Griffiss AFB NY 13441-5700.

This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or

notices on a specific document require that it be returned.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

IForm Appoe

REPORT DOCUMENTATION PAGE OMRNo. 070"18

is. REPORT SECURITY CLASSIFICATLON lb. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A

Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT

N/A Approved for public release;
2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE distribution unlimited.
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-89-259. Vol XI (of twelve)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Northeast Artificial (If applicable)

Intelligence Consortium (NAIC) . Rome Air Development Center (COES)
6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
Science & Technology Center, Rm 2-296
111 College Place, Syracuse University
Syracuse NY 13244-4100 Griffiss AFB NY 13441-5700

8. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Rome Air Development Center COES F30602-85-C-0008
fc ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO

Griffiss AFB NY 13441-5700 62702F 5581 27 13
11. TITLE (nclude Security C.assiflcation)
NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT - 1988
Inference Techniques for Knowledge Base Maintenance Using Logic Programming Methodologies
12. PERSONAL AUTHOR(S)
Kenneth A. Bowen
13a. TYPE OF REPORT 13b. TIME COVERED |14. DATE OF REPORT (Year, Month, Doy) IS. PAGE COUNT
Interim /FROM Jan 88 To Dee 8 1 October 1989 40

16. SUPPLEMENTARY NOTATION ih1S effort was funded partially by the Laboratory Directors' Fund.

17. COSATI CODES I. SUBJECT TERMS (Continue on rewre f neceny and identifj by block number)
FIELD GROUP SUB-GROUP Artificial Intelligence) Prolog

12 05 High Level Language) Logic Programming
Knowledge Base Maintenance- -Truth Maintenance

19. ABSTRACT (Contmue on revr if necoery and Ideify by block number)
-he major focus of this year's effort has been on the development of a formal mathematical
basis for logic programming. This report highlights four primary areas of on-going
investigation into this research: 1) stratified knowledge bases, 2) the equivalence of
non-classical logic programs, 3) multi-valued logic and logic programming, and 4) the
topological aspects of logic programs.

In addition, the MetaProlog (an extension of Prolog 1) and meta-logic programming are
discussed. ,

20. DISTRIBUTION I AVAILABIUTY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION

Q]UNCLASSIFIEDIUNLIMITED CS SAME AS RPT. C1 DTC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (ndude Arta Code) 22c. OFFICE SYMBOLohn . r (315) 330-3564 RADC (COES)

DO Form 1473, JUN 36 Pmviovusedti'Ware oboiefte. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

UNCLASSIFIED

Item 10. SOURCE OF FUNDING NUMBERS (Continued)

Program Project Task Work Unit
Element Number Number Number Number

62702F 5581 27 23
61102F 2304 J5 01
61102F 2304 J5 15
33126F 2155 02 10
61101F LDFP 27 01

Aoesio5n For
NTIS GRA&I

DTIC TAB
Unannounced [3
Justifioatlon

Distribution/

Availability Codes

Dist Special

UNCLASSIFIED

Northeast Artificial Intelligence Consortium

1988 Annual Report

Volume 11

Inference Techniques for Knowledge Base
Maintenance Using Logic Programming

Methodologies

Kenneth A. Bowen

Staff:
Hamid Bacha, Aida Batarekh, Assoc. Prof. Howard Blair, Ilyas Cicekli,

V.S. Subrahmanian

Logic Programming Research Group
School of Computer and Information Science

313 Link Hall, Syracuse University
Syracuse, New York 13244-1240

This work was supported by the Air Force Systems Command, Rome Air
Development Center, Griffiss Air Force Base, New York 13441-5700, under Contract
Number F30602-85-0008 which supports the Northeast Aritificial Intelligence
Consortium (NAIC).

i

Table of Contents

Execu tive Sum m ary .. 2

11.1 In tro d u ction 4

11.1.1 Non-Classical Logic Programming .. 6
11.1.2 Theoretical Basis for Logic Programming .. 6
11.1.3 M etaProlog ... 6

11.2 Hamid Bacha: Development of MetaProlog ... 8

11.3 Aida Batarekh: Topological Aspects of Logic Programming 12

11.4 H ow ard Blair 14

11.5 Ilyas Cicekli: The Design and Implementation of the MetaProlog System 19

11.5.1 MetaProlog Theories .. 19
11.5.2 Abstract MetaProlog Engine .. 20

11.5.3 P roofs 21
11.5.4 Fail Branches .. 22

11.5.5 Garbage Collector ... 22

11.6 V.S. Subrahmanian .. 23
11.6.1 Logic Programming with Non-Classical Logics 23

11.6.2 Paraconsistent Reasoning .. 23

11.6.3 Topological Methods in Logic Programming 24

11.6.4 Metalogic Programming ... 24

11.6.5 Types in Prolog .. 24
11.6.6 Auto-Epistemic Logics ... 24

11.6.7 Nuclear Systems ... 24

11.6.8 Algebraic Theory of Logic Program Construction 25

11.6.9 Protected Completions of Logic Programs .. 25

11.6.10 Theorem Proving in Systems with Equality .. 25

11.7 P ublications ... 27

Executive Summary

The primary focus of our research during the past year was on the development

of a mathematical basis for logic programming. Specific areas of active research

work include: stratified knowledge bases, equivalences of non-classical logic programs,

multi-valued logic programming, and topological aspects of logic programming. Con-

siderable success was achieved in each of these areas:

" We have studied the recursion theoretic complexity of the perfect (Herbrand)

models of stratified logic programs. It is shown that these models lie arbitrarily

high in the arithmetic hierarchy. As a consequence, we obtain a similar char-

acterization of the recursion theoretic complexity of the set of consequences of

a number of formalisms for non-monotonic reasoning. It is demonstrated that

under certain circumstances, this complexity can be brought down to recursive

enumerability.

* Logic programming with nonclassical logics has aroused a great deal of interest

(cf. the proposals for incorporating quantitative "certainty factors"of Van Em-

den, and Subrahmanian, the three-valued logics of Lassez-Maher and Fitting,

the four-valued logics of Blair-Subrahmanian and Fitting). We propose, four se-

mantical notions of equivalences of sentences based on classical and non-classical

logics. We show that under certain conditions on the lattice structure of the set

of truth values of the logic of interest, three of these notions of equivalence can

be captured in terms of results on the coiuvergence of monotone nets in topology,

while the fourth can be captured in terms of a property of convergent nets in

compact Hausdorff spaces. We also show that these net convergence theorems

allow us to characterize equivalences of Van Emden's quantitative rule sets,

Lassez and Maher's three valued logic programs, and sentences with negation

and disjunction as well as pure logic programs. Our work may be viewed as a

semantical counterpart of Maher's syntactical characterization of pure 2-valued

logic programs.

" We define a topology called the query topology on each of two sets - the set of

interpretations of a first order language and the set of models of any sentence

in the language. We show that in each of these cases, the resulting topology

is a perfectly normal, T4-space. In addition, the query topology on the set of

interpretations is compact. We derive a necessary and sufficient condition for

the query topology on the space of models of sentences to be compact and show,

2

in addition, that the completions of canonical logic programs have a compact

space of models. The familiar Tp operator may now be viewed as a function

from a compact Hausdorff space to a compact Hausdorff space. We show that if

P is either covered or function-free, then T, is continuous in the query topology.

The fact that the space of interpretations of a language i compact Hausdorff
allows us to use the well-known theorems in topological fixed point theory to

obtain heretofore unknown results oi the semantics of logic programming. We

present one such result - viz. a necessary and sufficient topological condition

that guarantees the J-consistency (a notion defined in the paper) of completions

of general logic programs.

* Recent results of Blair, Brown and Subrahmanian and independently, M. Fitting

have shown that the declarative semantics of logic programs when interpreted
over sets of truth values possessing some simple lattice theoretic properties

shows remarkably little change. We prove here that the operational semantics

(i.e. proof procedures) for such languages also show remarkably little change.

The principal result is that under a natural condition of support, a straightfor-
ward generalization of SLD-resolution is sound and complete w.r.t. processing

of queries over these differing logics.

3

11.1 Introduction

11.1.1 Non-Classical Logic Programming

Classical logic is a logic of truth. Using classical logic we can reason about the

truth of different kinds of propositions relative to a given theory. Thus, we classify

propositions as either being false or true.

Unfortunately, this often proves to be an overly simplistic point of view. For
instance, the famous Fermat's Last Conjecture must assuredly be either true or false,

but at this point in time, we are unable to say, with certainty, which of these cases

is the correct one. The same is also true of the P = NP ? problem. There are those,

however, who strongly disbelieve the proposition P = NP. Classical logic does not

permit us to express this disbelief because, of course, these disbelievers may well turn

out to be wrong, and it may indeed be proven a few years hence that P is indeed

equal to NP.

We view non-classical logics as logics of belief. Typically, human beings are fallible.

They have beliefs and disbeliefs, which may be wrong when judged relative to some

empirical standard. The process of changing our beliefs is a common occurrence in

our daily world. Often our beliefs turn out to be correct, but often they are not.

Worse still, people may hold beliefs that are inconsistent in some respects - yet they

may be able to reason perfectly well about certain other domains.

Our point here is simply that the study of beliefs is important, and perhaps even

more important than the study of truth, which is after all a rather ephemeral quantity.

We will, in particular study:

" a theory of logic programming that allows us to reason in the presence of in-

consistency. In particular we develop one such logic which belongs to a family

of logics that go by the generic name paraconsistent logics.

" a theory of logic programming that allows us to reason in the presence of un-

certain information, i.e. information which is vague in the sense that one is

not sure of its truth/falsity, but has some feel (usually expressed in terms of a

quantitative "certainty" factor) of the truth/falsity of a proposition.

" we have defined a family of of programming languages over multivalued logics

having a certain kind of algebraic structure (i.e. a complete lattice). We show

4

that under such circumstances, both the declarative (i.e. model theoretic and
fixed point theoretic) semantics and the proof-theoretic (i.e. query processing

procedures) generalize to the multivalued case.

5

11.1.2 Theoretical Basis for Logic Programming

As logic programming is a comparatively new field, we find that its basic the-

oretical underpinnings are very weak. There are many techniques in mainstream
mathematics which may be used as tools to study the semantics of logic program-
ming. It can hardly be doubted that establishing important links between well un-
derstood mathematical techniques and the semantics of classical and/or non-classical

logic programming can only help enrich the semantics of logic programming. With
this goal in mind, our group has undertaken the study of the topological and algebraic

foundations of logic programming.

Associated with any (classical) logic program is an operator whose fixed-points are

exactly the models of a formula called the completion of the program. One of the open

problems in logic programming is to determine conditions for the completion to be

consistent. A. Batarekh and V.S. Subrahmanian defined a (compact and Hausdorff)
topology called the query topology on the space of interpretations of the first order

language associated with a program. It is shown that whenever the program is either
covered and/or function free, the operator associated with the program has a fixed-

point iff it possesses a collapsibility condition. This collapsibility condition therefore
yields a necessary and sufficient condition for program completions to be consistent

(for such programs).

One can now study the algebraic properties of the space of programs by looking
at the set of all operators associated with programs and associating some binary
operators. Under some natural binary operators originally defined by Mancarella and
Pedreschi, we obtain an algebra on programs that is easily seen to be a distributive
lattice. The important question now is that of negation. Is there some notion of
complementation relative to programs ? Unfortunately, there is no such notion of
complementation that yields a Boolean algebra or for that matter any richer algebraic

structure like a ring, etc. (except in the most trivial cases). Finally, we caii use this

framework to study the equivalences of programs -- in particular, a notion called

subsumption equivalence due ,W Maher can be generalized considerably to normal

logic programs and also to paraconsistent and/or iriultivalued logic programs.

11.1.3 MetaProlog

The other major thrust of our group has involved the development olt lie NletaPro-
log system. MetaProlog is a powerfl syst em whose primary aim is t(, ;flow t he user

6

to fully utilise metalevel features like theory manipulation, proof maintenance, etc.

U ntil recently, MetaProlog lacked an elegant theoretical basis, and this was one of the

major open problems. During this year, V. S. Subrahmanian took the first steps to-

wards the development of an elegant theoretical basis for MetaProlog. It was shown

that the mathematical basis for metalogic programming is not very different from

that for classical logic programming. However, certain essential changes are present.

7

11.2 Hamid Bacha

Development of MetaProlog

The two major as omplishments of this year are the completion of the first phase

of the MetaProlog system and the implementation of a medical expert system in

MetaProlog. The MetaProlog language is an extension of the popular logic program-

ming language Prolog. As a high level programming language, Prolog has the most

efficient implementation while still closely approximating the ideals of logic program-

ming. Nevertheless, it has many limitations in terms of expressive power and problems

with its ad hoc extra-logical features. These shortcomings have been recognized for a

long time by many researchers, and a meta-level approach has been advocated as an

alternative. Among the shortcomings that hamper the expressive power of Prolog are

the many aspects that are supported by its' underlying architecture, but not directly

available to the user. Some of these aspects are:

* The sets of clauses (database)

• The provability relation (I-)

* The control strategy (depth first search, clause selection according to textual

order)"

* The rules of inference

* The proof trees

Some of the add hoc extra-logical features of Prolog that tend to cause problems

are the "assert" and "retract" primitives which dynamically modify the database.

The MetaProlog system tries to deal with some of these shortcomings while preserving

the ideals of the logic programming paradigm. The tacit and otherwise inaccessible

aspects of the system it makes explicit ir~clude the provability relation (referred to

as "demo"), the sets of relations or procedures (referred to as "theories"), the sets of

clauses making up a procedure (referred to as a "viewpoint"), and the proof trees.

The primitives "assert" and "retract" are replaced by "addto" and "dropfrom" which

are used to create new theories from existing ones. Some definitions were introduced

to extend the accepted Prolog terminology to cope with the use of multiplc databases

(actually, instead of saying we use multiple databases, we prefer to say we have one

database which contains multiple theories). These definitions are:

" A MetaProlog database is a collection of theories and relations (procedures).

" A relation is a collection of beliefs.

" A theory is a collection of viewpoints.

" A viewpoint is a set of relp.,d beliefs (equivalently, a subset of the set of beliefs

making tip a relation).

" A belief is a MetaProlog fact or rule.

As we can see from these definitions, the MetaProlog database contains theories,

and the theories contain viewpoints. A built-in inheritance mechanism lets theories

share clauses, thus avoiding the prohibitive cost of copying clauses from theory to
theory. A fast algorithm is used to match the theories with their corresponding

viewpoints.

Proofs, in the form of proof trees, are directly available to the MetaProlog user.

They are treated as first-class objects and can be manipulated very much like any

other MetaProlog terms. Since they include all the subgoals that participate in the
evaluation of a given goal, they can be used, for example, to generate explanations for

applications involving expert systems. An unexpected but pleasantly surprising use
of proof trees is to affect the control strategy of the system by directing the search for

a solution along a more desirable path. Indeed, if the system is presented with a goal

and a proof tree indicating a possible solution, it only needs to check whether there

is a proof for the stated goal along the branches of the search space corresponding to
the given proof tree. In other words, the proof tree guides the search for the solution.

No other possibly wrong or infinite paths need to be followed during the evaluation
of the goal. No other solution needs to be considered. We can also use proof trees

that are only partially instantiated. That is, a skeletal description of some desirable

features we would like to see participate in the solution. In this case, the partially
instantiated proof tree serves to focus the system's attention on specific portions

of the search space, leaving it free to explore within these selected subspaces. Early

pruning of non-fruitful branches of the search space and avoidance of blind alleys may

lead to a more efficient solution for certain types of problems, despite the overhead

associated with the proof trees.

The extensions mentioned above were achieved in the context of a compiled ap-

proach based on the Warren Abstract Machine architecture. This resulted in a fast

and efficient system which relies on an interactive incremental compiler for flexibility

9

and ease of use. The objective of these extensions is to provide a richer and more

expressive language, as well as a more accommodating environment for artificial intel-

ligence applications such as knowledge representation, natural language processing,
and expert systems.

To test the suitability of MetaProlog for large scale applications, we embarked on
the task of implementing a medical expert system. The area of expertise selected was

that of Acid-Base and Electrolyte Disorders. The goal was to integrate the clinical
knowledge with the pathophysiological knowledge to come up with a robust expert
system that combines both surface-level and deep-level reasoning. The system built

used some innovative features such as:

" First-principles assisted evidential reasoning: This method relies on the more
prevalent and widely used clinical knowledge for diagnostic purposes, but brings
in the pathophysiological knowledge on an as needed basis.

" Progressively expanding diagnostic possibilities: Meta-level knowledge and pri-
orities are used to restrict the search for the diagnosis to the more promising
leads. These restrictions are then progressively lifted to include more and more

possibilities for consideration. This method provides a more focussed approach
and a better interaction between the system and the user.

* Thesaurus-driven user interface: all the interactions between the system and
the user are carried through the user interface. To enhance the friendliness of

the system, the user interface is coupled with a thesaurus that defines all the
terms of interest in the domain of the expert system. The thesaurus specifies
the type of query to be used with each term and the type of answer to expect. It
lists the variations as well as the qualifiers applicable to each term. Whenever

possible, it specifies the precondition that must hold before the user can be
queried about a certain finding.

The preliminary results from our experiments with this system were very promis-
ing and seem to suggest that we have an adequate approach. More important, the
whole experience in implementing this system point to the usefulness and suitability

of MetaProlog for implementing expert systems. The MetaProlog system offers both
a fuinctional design advantage in terms of knowledge representation and hypotheses
exploration, and a software engineering advantage in terms of structuring the expert

system shell.

10

Future Work

Unlike many researchers who rely mainly on meta-interpreters to obtain the ad-

vantages of the meta-level approach, we went one step further and showed that it is

possible to have some of these same advantages plus the speed of a compiler. How-
ever, only some of the desired features of MetaProlog have been implemented in this

first phase. The next phase should address the following points:

" Explicit control: we should be able to specify the control regime to be used

to solve any goal or subgoal. We should be able to choose between depth-
first, incremental iterative deepening, or breadth first strategies. We should

also have some way of specifying the order of the clauses when there are many

alternatives.

" A choice of forward or backward chaining. This issue is tied to the control

strategy above.

" A delay mechanism for waiting for some variables to be bound to ground terms.

" A mechanism for allowing coroutining to take place.

* Incomplete theories, that is theories that are not completely specified

" Explicit quantification

In addition to the direct work on the MetaProlog system, suitable projects in var-
ious areas of Artificial Intelligence should be identified and implemented in MetaPro-

log. These projects should be large and realistic enough to test the limits of the
system. The lessons to be learned from these projects should hopefully confirm the
viability of the many features of MetaProlog and help establish it as a major player

in the area of research and development of Artificial Intelligence systems.

11

11.3 Aida Batarekh

Topological Aspects of Logic Programming

Part I

Part I of this report was done in collaboration with V.S. Subrahmanian. A topol-

ogy on the set of interpretations of a logic program P was defined, and its properties

studied. The Query topology is defined as follows: the open sets are the collection of

all subsets of X which satisfy a (possibly infinite) disjunction of individual existential

queries. If all Li's are positive literals, the query is said to be positive, if all Li's are

negative literals, the query is negative. We show that the Query topology gives rise

to a totally disconnected, Tychonoff, complete and metrizable space.

A study of equivalences of sentences based on classical and non-classical logics

was also pursued. We proposed four notions of equivalences of sentences. We showed

that under certain conditions on the lattice structure of the set of truth values of the

logic of interest, three of these notions can be captured in terms of results on the

convergence of monotone nets in topology, while the fourth notion can be captured in

terms of a property of convergent nets in compact Hausdorff spaces which is what the

Query topology gives rise to. Our work may be viewed as a semantical counterpart of

Maher's syntactical characterization of pure 2-valued logic programs. These results

can be found in the technical report "Semantical Equivalences of (Non-Classical)

Logic Programs", which has also been presented at the 5th International Conference

on Logic Programming, August 88, Seattle.

Further investigations into the notion of axiomatizability, which we have previ-

ously defined, lead to the study of the special case of finitely definite clause axiom-

atizability or FDC-axiomatizability for short. We study mappings which are FDC-

deformations, i.e., mappings from sets of interpretations into sets of interpretations

such that the property of FDC-axiomatizability is preserved. We narrow the Query

topology to the set of FDC-axiomatizable interpretations and investigate whether

special properties can be obtained.

Part II

I studied the connection between the Query topology and the well-known Scott

topology and established the following: the collection of all open sets which

satisfy a disjunction of positive queries, are exactly the open sets in the Scott topology.

12

Similarly, the collection of all open sets which satify a disjunction of negative queries

are the open sets in the Inverse Scott topology, which I have defined in a manner

symmetrical to that of Scott topology. It is also shown that the Inverse Scott topology

is distinct from the dual of the Scott topology. These results and some properties of
the Query topology can be found in publication [9].

The lattice of interpretations is shown to be algebraic and supercontinuous hence

also complete and continuous. Therefore one can compare the Query topology to
the Lawson topology which is defined only on continuous lattices. The relationship

between the two is established: the open sets in the Query topology are exactly the

open sets in the Lawson topology. This in turn was used to prove that the space was

compact and 0-dimensional, hence that it had a countable base of sets which are both

open and closed. These results appear can be found in publication [10].

A notion of axiomatizability is introduced and a set Y of interpretations is shown
to be axiomatizable with a set S of clauses if and only if Y is closed in the Query

topology. These results and others pertaining to the applications of topology in Logic
Programming have been collected in a technical report [11] which will be submitted

to a journal for possible publication.

Having proved that the space of interpretations under the Query topology is a

complete metric space, i.e. that there exists a metric which metrizes the space, the
nature of the metric is investigated. I show that the Query topology is a Cantor space,

and that there is a homeomorphism between the space of interpretations under the

Query topology and the Cantor set.

The potential applications of the results found for the Query topology are studied
with respect to non-monotonic deduction operators occuring in the underlying lan-

guage. Specifically, an attempt is made at modifying the Query topology to deal with
the non-monotonic operator V introduced in my dissertation and used to introduce

assumptions.

An investigation into the continuity properties (continuity as defined in topology)

of the well known deduction operators T T a and T j} a shows that they are continuous

over the set of Herbrand interpretations of a pure logic program P provided P has

no clauses with free variables and a < w.

13

11.4 Howard A. Blair

Several questions having to do with conservative extensions of logic programs were

investigated during fiscal year 1988. These questions grew out of a paper by Howard

Blair which was presented by him in August 1987 at the 1987 IEEE Symposium on

Logic Programming, San Francisco, CA. The citation for this paper follows.

Blair, H. A. "Canonical Conservative Extensions of Logic Program Completions",

IEEE Symposium on Logic Programming, San Francisco, August, 1987. pp. 154-161.

This work has culminated in a theorem which constructvely establishes a domain over

which every logic program is canonical. This theorem was found recently by Howard

Blair in collaboration with Allen L. Brown, of both Xerox Webster Research Center's

System Science Laboratory and the School of Computer and Information Science at

Syracuse University.

Final editing of the following paper was carried out.

Apt, K. R., Blair, H. A., & Walker, A. "Towards a Theory of Declarative Knowledge,"

in Foundations of Deductive Databases and Logic Programming, Jack Minker, ed.

Morgan-Kaufmann, Los Altos, CA. 1988. pp. 89-148.

An earlier version of this paper has issued in 1986 as an IBM Thomas J. Watson

Research Center (Yorktown Ieights) technical report. This was seminal work that

introduced the theory of stratified logic programs. The book containing the paper

was at last published, nine months behind schedule, in March 1988.

During the early part of the fiscal year an initial draft of the following paper

completed.

Blair, 1-1. A., Brown, A. L. and Subrahmanian, V. S. "A Logic Programming Semantics

Scheme. Part I." .Jan. 1988. Syracuse UTniversity Logic Programming Research Group

Technical Report LPRG-TR88-8.

14

This paper presents the thesis that a logic program P without negation, over a

variant logic, is a theory that can be associated with an operator whose prefixed

points are exactly the models of P. Part II of this paper to be entitled, "A Logic Pro-
gramring Semantics Scheme, Part II: DOXOLOG, a Belief Maintenance Language",

is concerned with an application of the semantic approach of part I to give a formal

semantics for the language DOXOLOG, indicated in the above title.

I continued my investigations of morphisms in logic programming model theory.
This work is an attempt to, in particular, model-theoretically formalize the semantics

of database updates. The idea is that a new database instance is a morphic (roughly

homornorphic) image of a previous database instance such that both instances are

models of the same theory of the database's integrity constraints.

A draft of a proposal for research on Computational Reasoning with Nonclassical

and Paraconsistent Logics was prepared. The proposal is intended for submission to

various funding agencies toward the end of the current fiscal year.

Working with Krzysztof R. Apt of the Centre for Mathematics and Computer

Science in Amsterdam, the Netherlands, and the University of Texas at Austin, I
wrote the following paper.

Apt, K. R. & Blair, H. A. "Arithmetic Classification of Perfect Models of Stratified

Programs" Jan. 1988. Appears in The Proceedings of the Joint Fifth International
Logic Programming Conference and Fifth IEEE Symposium on Logic Programming

Scattlc, Wazhington, August, 1988. Also appears as the Syracuse University Logic

Programming Research Group Technical Report LPRG-TR88-11.

This paper shows that the expressive power of stratified programs climbs the
arithmetic hierarchy as the number of strata increase. This and related results were

discussed but not proved in earlier drafts of our paper "Towards a Theory of Declara-
tive Knowledge", mentioned above. A subsequent result showed that if the programs

satisfied an additional hierarchical constraint, then their standard model remains

conpuitable, hence queries are computable in such circumstances. These latter re-

suits were reported in

15

Apt. 1K. li. & Blair, H. A. "Recursion-free Programs". Syracuse University Logic

Programming Research Group Technical Report LPRG-TR-88-12.

Following the Logic Prograzllnitig conference last August, the "Arithmeic Classifi-

cation paper was invited for submission to the journal Ftindamcnta Inforinatica, and

a version that amalgamates the coi',,rence paper and the "R~ecursion-free Programs"

paper was subsequently accepted for a special issue on stratified logic programs and

databases. This work was also presented by ine at, a colloquium talk in April 1988 at

the State U'niversity of New York iI ..\lbany.

Mv student V.S. Subrahmanian travelled to Pune. India to present the paper

indicated below.

Blair., H. A. & Subrahmanian, V. S. "Paraconsistent Logic Programming" (Prelimi-

nary Version) Seventh Conference on Foundations of Software Technology & Theo-

retical Computer Science. December, 1987. pp. 340-360.

Subsequently, in February, 1988 a revised version of this paper was invited for

submission to a special issue of the journal Theoretical Computer Science for a special

issue on selected papers from the Seventh Conference on Foundations of Software

Technology & Theoretical Computer Science. The paper was subsequently accepted.

Paraconsistency is discussed somehat further by V.S. Subrahmanian, below.

Progress on two lines of research was made which were subsequently embodied in

revisions of the following two papers.

Blair, H. A., Brown, A. L. and Subrahmanian, V. S. "A Logic Programming Semantics

Scheme, Part ." Jan, 1988. Syracuse University Logic Programming Research Group

Technical Report LPRG-TR88-8.

Blair, H. A. "Metalogic Programming and Direct Universal Computability". Syracuse

University Logic Programming Research Group Technical Report LPRG-TR88-23.

This paper was presented at Meta88: Workshop on Meta-programming in Logic Pro-

16

gramming. The paper is scheduled to appear in the proceedings of this workshop to

be published by MIT Press.

My second Ph.D. student, Toshihiro Wakayama passed his qualifying examination,

both the written and oral parts, and formally became a doctoral candidate. Toshihiro

is currently in his third year as a Graduate Fellow. While not directly supported by

the grant, Toshiro has been an integral part of the Logic Programming Laboratory's

effort. Toshihiro also had the following paper accepted for the 1988 Conference on
Automated Deduction. He is expected to graduate at the end of the current academic

year.

Payne, T. H. & Wakayama, T. "Case Inference in Resolution-Based Languages,"
Proc. 9th Conference on Automated Deduction, Lecture Notes in Computer Science,

Springer-Verlag, May 1988.

Toshihiro subsequently presented the paper at the conference.

My third Ph.D. student, Frank Yang took and passed his Ph.D. qualifying exam.

Frank has begun research on relevance and relatedness logic, and will be supported in
the Logic Programming Laboratory through indirect assistance of a major corporation
active in computer science research. As Frank's work progresses it is expected that
he will come more and more under the tutalage of Allen Brown.

My fourth Ph.D. student, Marion Ben Jacob, passed both the written and oral

parts of her Ph.D. qualifying examination thereby formally becoming a doctoral can-
didate. Marion, in collaboration with Prof. Melvin Fitting. CUNY, jointly authored

a paper entitled "Stratified and Three Valued Logic Programming Semantics". This
paper also appeared in the proceedings of the Joint Fifth International Logic Pro-

gramning Conference and Fifth IEEE Symposium on Logic Programming, and will

appear in the special issue of Fundamenta Informatica on stratified Logic Programs

and(databases.

Some progress was made early in 1988 on "An Inductive, Stratification-free Defini-
t ion of Standard Models of Stratified Logic Programs". It is still in a formative stage.

The work that needs to be done to establish this 'definition' requires that, a limit of

17

an alternating operator, recursive in zero-jump, exist in the right circumstances.

In collaboration with Prof. Mark Brown of the Philosophy Dept., Syracuse Uni-

versity. I organized an interdepartmental weekly seminar on mathematical Jogic. My

general interest in a theory of intentionality involves considering formal metalogics,
which in turn, due initially to the work of Peter Aczel of Manchester University and
Jon Barwise and his colleagues at the Center for the Study of Language and Informa-
tion at Stanford University, involves what has come to be known as situation theory

arid non-well-founded set theory. The mathematical logic seminar has been studying
carefully some of the work of Barwise and his colleagues. My own research yielded

techniques for constructively obtaining what are called co-inductively defined classes

of hypersets, which include well-founded and non-well-founded sets, and in one case
with the aid of my techniques we have shown that the class of hyperordinal numbers

contains all hypersets, a new, though simple, result, and the same techniques indicate
how to modify the definition of hyperordinal to obtain a less trivial class which will
still include all of the usual, well founded ordinals. I am currently at work on this

modification and constructing the theory to justify it. I am expecting that the results
obtained here will lead to theories of metalogic and intentionality which in turn I can

exploit for the purpose of formulating a continuous semantics for logic programming
languages and metalogic programming languages.

Two other results obtained during Fiscal year 1988 were that I developed a func-

tionally oriented theory of nondeterministi, partial recursive functions in accord witih
an earlier theory, relationally oriented, of such functions advanced by Ashok Chan-

dra, and this theory was applied to showing that a logic program with a well-founded

dependency relation forms a 1l-complete set.

18

11.5 Ilyas Cicekli

The Design and Implementation of The MetaProlog System

Most of the meta-level systems implemented in last decade are meta-level interpreters
which introduce extra interpretation layers that slow down the execution. The
MetaProlog system described in this report is a compiler-based meta-level system for

the MetaProlog programming language. Since MetaProlog is an extension of Pro-
log, we extended the Warren Abstract Machine (WAM) to the Abstract MetaProlog
Engine (AMPE). MetaProlog programs are directly compiled into the instructions of
the AMPE.

In the rest of this report, the MetaProlog system is briefly described. Theo-
ries which are first class objects in MetaProlog, and their representations in the
MetaProlog system are discussed in Section 2. The basic structure of the AMPE
is explained in Section 3. In the last section, the garbage collector of the MetaProlog

system is presented.

11.5.1 MetaProlog Theories

In Prolog, there is a single database, and all goals are proven with respect to this
database. When there is a need to update this database, the builtins assert/retract,
which are ad hoc extensions to the basic logic programming paradigm, are used to
create the new version of this database by destroying the old database in the favor of
the new one. On the other hand, there can be more than one theory in MetaProlog,
and a goal can be proven with respect to one of these theories A new theory in
MetaProlog is created from an old theory without destroying the old theory.

A new theory is created from an old theory already exists in the system by adding
some clauses or dropping them. The new theory inherits all procedures of the old
theory except procedures explicitly modified during its creation. Although we
create a new theory from an old theory, the old theory is still accessible by the

user.

The provability relation between a theory and a goal is explicitly represented in
MetaProlog by a two argument predicate "demo". The relation "demo(Thtory,Goal)"
precisely holds when "Goal" is provable in "Theory". Similarly, the relation demo(
Theory, Goal, Proof) holds when "Proof' is the proof of "Goal" in "Theory". When
one of these provability relations is encountered, the underlying theorem prover tries

19

to prove the given goal with respect to the given theory.

Theories of the MetaProlog system are organized in a tree whose i,,lot Is a distiil-

guished theory, the base theory. The base theory contains all the sV toni ill inis, ald

all other theories in the system are descendants of the base therv. I ti er wo, ds,

all theories can access procedures of the base theory.

Every theory in the MetaProlog system possesses a default theorY u.x(cI)1 for the

base theory. The default theory of a theory T is the theory where w. eiarcll for a

procedure if the search for that procedure in T fails. This search htioii.lh default,

theories continues until the procedure is found or the base theorY ireachd.

To shorten the depth of the theory, theories in the MetaProlog syst ei are classified

intv two groups : "default theories", and "non-default theories". . u "jiun-default

theory" is a theory that carries information about all procedures that underwent

modifications in the ancestor theories between this theory and its default theory.

Access to these procedures is very fast, at expense of copying some references. The

default theory of a theory is the first ancestor theory that is a "default theory". A

"default theory" is a theory whose descendants don't carry any information about the

procedures occurring in that theory. If only default theories are used, access to a given

procedure in a given theory may require a search through all its ancestor theories. In

this case, access to a procedure may be slow, but no copying of references is needed.

Depending on the problem, the system tries to use one or the other approach, or a

combination of both to achieve a balance between speed of access and space overhead.

When a new theory is created from a non-default theory, its default theory will

be its father's default theory. But if a new theory is created from a default theory, its

default theory will be its father. In the first case, the new theory will be at its father's

level. In the second case, the new theory will be at one level above its father's level.

Thus we don't increment the depth of the theory tree when a theory is created from

a non-default theory.

11.5.2 Abstract MetaProlog Engine

Our main goal in this project was to create an efficient compiler-based MetaProlog

system. Since MetaProlog is an extension of Prolog, the Warren Abstract Machine

(WAM) was the best starting point. For this purpose, the WAM is extended to the

Abstract MetaProlog Engine (AMPE).

The AMPE performs most of the functions of the WAM, but it also has some extra

features to handle theories and compiled procedures as data objects of the system.

20

These extra features basically are:

" Extra registers to handle theories in MetaProlog.

" A different memory organization which is more suitable to handle compiled

procedures and theories as data objects of the system.

* The functions of the procedural instructions in the AMPE differ from their

functions in the WAM.

There are two new registers in the AMPE in addition to the registers the WAM

does. The first one is the "theory register" which holc~s the current theory (context)

of the MetaProlog system. The value of the "theory regisLer" is changed when the

context of the system is switched to the another context. This register is also saved

in choice points so that the context of the system can be restored the value saved

in the last choice point during backtracking. The second one is the "theory counter

register" which is simply a counter to produce a unique theory-id for each theory

in the system. It is is incremented to indicate the next available theory-id after the

creation of each theory.

The code space and the heap in the WAM are integrated as a single data area

in the AMPE which is more suitable to handle compiled procedures as data objects.

This integrated space in the AMPE is still called "heap". Thus theories and compiled

proce(hres can be created on fly, and they are can be easily discarded when the need

for them is gone. The local stack and the trail of the AMPE still perform the same

job they perform in the WAM.

11.5.3 Proofs

The AMPE can run in two different modes. When a two argument "demo" pred-

icate is encountered, the system runs in the simple mode. In the simple mode, the

system only proves a goal with respect to the current theory of the system. When a

three argument "demo" predicate is encountered, the mode of the system is switched

to the proof mode. In the proof mode, a goal is not only proved with respect to

the current theory of the system, its proof is also collected. At the implementation

level, the mode of the system is represented by a mode flag which is also saved in

choice points so that the system can switch from one mode to the another during

backtracking.

21

In the simple mode of the system, only the core part of the system described above
is used. On the other hand, two extra registers are used in addition to the core part
of the system when the svsteni runs in the proof mode. These extra two registers are

used to collect the proof of a goal during its execution.

11.5.4 Fail Branches

After finishing the core part of the MetaProlog system, I started to extend the
MetaProlog system which can handle extra control information in the demo predicate.

Now, the MetaProlog system have the following capabilities.

1. Now the system can get fail branches of a goal in addition to its success branches
(proofs). When the goal "demo(T,G,branch(P))" is submitted, P is unified with
a branch (fail or success) of the proof tree of G in T. On the other hand, when
the goal "demo(T,G,proof(P))" is submitted, P is unified with only a success

branch of the proof tree of G in T.

2. The system also supports a fourth argument demo whose fourth argument is
control information. In some cases, to get .. -omplete proof of a goal can be
unnecessary. We may not need all proofs of subgoals. For this purpose, proofs of
these subgoals can be skippet by using the following form of the demo predicate.

demo(T, G, proof (P), skip-proof s-of (Subgoals))

After the execution of the above, proofs of SubGoals don't appear in the proof

P of G in T.

11.5.5. Garbage Collector

The garbage collector of the MetaProlog system collects all the garbage in the
system including the garbage in the code. It consists of a recursive marking routine
and a compaction routine. The marking routine recursively marks all locations in
the heap which are accessible from external locations such as argument registers, and
locations in the local stack. The garbage compaction routine, an extension of Morris's
compaction algorithm, adjusts all pointers in the uncompacted heap and does the real

compaction.

22

11.6 V. S. Subrahmanian

Theory of Logic Programming

My primary work during this period concentrated on the development of a matheniat-

ical basis for classical and non-classical logic programming. In particular, I developed,

jointly with Aida Batarekh, a topological theorv of logic programming model theory,

while both alone and/or jointly with A. N. Hirani, I developed an algebraic basis for

logic programming. I also concentrated on the study of several different non-classical

logic programming languages.

11.6.1. Logic Programming with Non-Classical Logics.

I have been involved in the development of a family of non-classical logic pro-

gramming languages that can be semantically characterized in terms of fixed-point

theory. Proposals for logic programming with specific logics (e.g. quantitative logics,

paraconsistent logics, etc.) were later generalized to yield a generalized declarative

semantics for logic programming over certain kinds of partially ordered sets of truth

values. This declarative semantics is independent (to some extent) of the syntactic

nature of a non-classical logic program. In addition, I developed a proof-theoretic

generalization of SLD-resolution that is sound and complete for many-valued logic

programs (whose set of truth values is a complete lattice).

11.6.2. Paraconsistent Reasoning.

The design of very large knowledge bases may sometimes result in some inaccu-

racies. Paraconsistent logics provide a framework for reasoning in the presence of

inconsistency (in the sense of classical logic) via non-classical model theory. Howard

Blair and I have worked on a formal theoretical framework for mechanical reasoning

in the presence of inconsistency. More recently, M. Chakrabarti and I are working on

the semantics of general logic programs (even those whose completions are inconsis-

tent) with a view to developing a theory of local and global consistency. Newton da

Costa and I are investigating syntactic consequence relations that lead to paraconsis-

tnt logics with a view to developing a proof-theoretic characterization of inconsistent

databases.

23

11.6.3. Topological Methods in Logic Programming.

Aida Batarekh and I studied the topological properties of the space of models

of logic programs (and also arbitrary sentences in first order logic). We then de-

rived results on the fixed-points of non-monotonic operators that map structures to

structures. As a consequence of some results on the (topological) continuity of the
well-known operator Tp associated with a logic program P, we were able to obtain

necessary and sufficient conditions on the consistency of comp(P) (when P is either

a function free or covered logic program).

11.6.4. Metalogic Programming.

My paper Foundations of Metalogic Programming is the first paper to address

the problem of developing a formal theoretical framework for reasoning about the
amalgamation of object language and metalanguage in logic programming. It is a

companion to the paper by Pat Hill and John Lloyd that considers metalevel pro-

gramming without the amalgamation.

11.6.5. Types in Prolog.

Lee Naish and I have jointly developed a framework for incorporating types in

Prolog. For programming purposes, our view is that type declarations are useful,

and our semantics essentially characterizes logic programming augmented with type

declarations.

11.6.6. Auto-Epistemic Logics.

Wiktor Marek and I are currently studying the connections between differing

treatments of negation in logic programming and Al. In addition, we have studied

the complexity of determining the truth of a formula in a stable expansion of an

auto-epistemic first order theory.

11.6.7. Nuclear Systems.

24

A nuclear system is essentially a triple (S, -, Q) where S is a non-empty set, Q
is the set of existential queries that can be expressed in some fixed but arbitrary

first order language, and I- is a binary relation between S and Q. For example, S

may be a set of theories, and F- may be an entailment relation, or S may be a set of

interpretations for a first order language and I- may be a model-theoretic satisfaction

relation, or S may be a set of theories and F may be a non-monotonic forcing relation.
When the nuLlear system satisfies some simple conditions, S turns out to be a compact
Hausdorff space (under a topology induced by the - relation). One can now study
the fixed-points of non-monotonic closure operators in terms of topological results.

11.6.8. Algebraic Theory of Logic Program Construction.

Given a logic program P, the operator Tp associated with P is closely related
to the intended meaning of P. Given a first order language L that is generated by
finitely many non-logical symbols, our aim is to study the algebraic properties of the

set {Tp I P is a general logic program in language L} with certain operators on it.
For the operators defined in this paper the resulting algebraic structure is a bounded

distributive lattice. Our study extends (to the case of general logic programs), the
work of Mancarella and Pedreschi who initiated a study of the algebraic properties of

the space of pure logic programs. We study the algebraic properties of this set and
identify the ideals and zero divisors. In addition, we prove that our algebra satisfies

various non-extensibility conditions. This algebraic study shows promise of leading
to a theory of modules in logic programming.

11.6.9. Protected Completions of Logic Programs.

The notion of protected completion pc(P) of a logic program P was introduced
by Jack Minker and Don Peris. The Minker-Perlis proposal laid the foundation for

reasoning via protected completions for pure, function free logic programs. We extend
their work by characterizing protected completions of general logic programs. Thus,
both restrictions in the Minker Perlis proposal are removed. Operational algorithms

are also developed. This work is being carried on jointly with James Lu.

11.6.10. Theorem Proving in Systems with Equality.

25

James Lu and I studied certain open problems concerning the soundness and

completeness of various problems in RUE-NRF deduction. We proved, amongst

other results, that RUE-NRF deduction in strong form is incomplete contradicting

existing published results of V. Digricoli and M. Harrison. Our disproof has since

been acknowledged as being correct by V. Digricoli. Since then, we have worked on

the problem of termination of the viability check in RUE-NRF deduction using a

method based on AND/OR graphs.

26

11.7 Publications

1. Apt, K. R., Blair, H. A., & Walker, A. "Towards a Theory of Declarative

Knowledge," in Foundations of Deductive Databases and Logic Programming,

Jack Minker, ed. Morgan-Kaufmann, Los Altos, CA. 1988. pp. 89-148.

2. Apt, K. R. & Blair, H. A. "Arithmetic Classification of Perfect Models of Strat-

ified Programs" Jan. 1988. Appears in The Proceedings of the Joint Fifth Inter-

national Logic Programming Conference and Fifth IEEE Symposium on Logic

Programming Seattle, Washington, August, 1988. Also appears as the Syracuse

University Logic Programming Research Group Technical Report LPRG-TR88-

11.

3. Apt, K. R. & Blair, H. A. "Recursion-free Programs". Syracuse University

Logic Programming Research Group Technical Report LPRG-TR-88-12.

4. H. Bacha. MetaProlog Design and Implementation, Proceedings of the Fifth

International Conference on Logic Programming. Seattle, Wa. 1988. Edited by

K.A. Bowen and R. Kowalski.

5. H. Bacha. Beyond the WAM: A PAM for the CAM. (A Prolog Abstract Ma-

chine for Content-Addressable Memory.), Submitted to the 6th International

Conference on Logic Programming to be held in Lisbon, Portugal in June 1989.

6. H. Bacha and S. Khanna. Program Verification Using Meta-Level Logic Pro-

gramming, Submitted to the 6th International Conference on Logic Program-

ming to be held in Lisbon, Portugal in June 1989.

7. H. Bacha, K. Bowen and C. Carvounis. Clinical vs Pathophysiological Knowl-

edge in Medical Expert Systems, In preparation, To be submitted to a medical

journal.

8. A. Batarekh and V. S. Subrahmanian. Semantical Equivalences of (Non-Classical)

Logic Programs, Proc. 5th International Conference on Logic Programming,

Seattle, MIT Press.

9. A. Batarekh and V.S. Subrahmanian. The Query Topology in Logic Program-

ming, Proc. Intl. Symp. on Theoretical Aspects of Computer Science, Lecture

Notes in Computer Science, Springer Verlag, Feb. 1989.

10. A. Batarekh and V.S. Subrahmanian. Topological Model Set Deformations in

Logic Programming, to appear in: Fundamenta Informatica.

27

11. A. Batarekh and V.S. Subrahmanian. A T4 Space of Models of Logic Programs

and their completions, I: Foundations, Technical Report, Logic Programming

Research Group, LPRG-TR-88-15.

12. Blair. H. A. "Canonical Conservative Extensions of Logic Program Comple-

tions", IEEE Symposium on Logic Programming, San Francisco, August, 1987.

pp. 154-161.

13. Blair, H. A. "Metalogic Programming and Direct Universal Computability".

Syracuse University Logic Programming Research Group Technical Report LPRG-

TR88-23. To appear in the Proceedings of the Workshop on Metalogic Program-

ming 1988 MIT Press.

14. Blair, H. A., Brown, A. L. and Subrahmanian, V. S. "A Logic Programming

Semantics Scheme, Part I." Jan, 1988. Syracuse University Logic Programming

Research Group Technical Report LPRG-TR88-8.

15. H. A. Blair and V.S. Subrahmanian. Paraconsistent Logic Programming, Proc.

7th Conference on Foundations of Software Technology and Theoretical Com-

puter Science, Lecture Notes in Computer Science, Vol. 287, pps 340-360,

Springer Verlag. Extended version to appear in: Theoretical Computer Sci-

ence.

16. H. A. Blair and V. S. Subrahmanian. Strong Completeness Results for Para-

consistent Logic Programming, submitted to a technical journal.

17. H. A. Blair and V. S. Subrahmanian. Paraconsistent Foundations for Logic

Programming, to appear in: Journal of Non-Classical Logic.

18. I. Cicekli. An Abstract MetaProlog Engine for MetaProlog, in: Proc. of the

Workshop on Meta-Programming in Logic Programming, Bristol, England,

June 1988.

19. A. N. Hirani and V. S. Subrahmanian. Algebraic Foundations for Logic Pro-

gramming, I: The Distributive Lattice of Logic Programs, to appear in: Funda-

menta Informatica.

20. Payne, T. H. & Wakayama, T. "Case Inference in Resolution-Based Languages,"

Proc. 9th Conference on Automated Deduction, Lecture Notes in Computer

Science, Springer-Verlag, May 1988.

28

21. V. S. Subrahmanian. Query Processing in Quantitative Logic Programming,

Proc. 9th International Conference on Automated Deduction, (eds. E. Lusk

and R.Overbeek), Lecture Note- in Computer Science Vol. 310, pps 81-100,

Springer Verlag.

22. V. S. Subrahmanian. Intuitive Semantics for Quantitative Rule Sets, Proc. 5th

International Conference/Symposium on Logic Programming, (eds. K.Bowen

and R.Kowalski), MIT Press, Aug. 1988.

23. V. S. Subrahmanian. Mechanical Proof Procedures for Many Valued Lattice

Based Logic Programming, accepted for publication in a technical journal.

29

